Structural Bioinformatics

Genome 541

Spring 2023
Lecture 1: Protein Structure
Frank DiMaio (dimaio@uw.edu)

HW \#O: Getting PyMol and PyRosetta

Today's class will introduce protein structure and PyMol Thursday's class will provide a hands-on demo of PyRosetta

```
PyMol:
    DOWNLOAD URL: https://pymol.org/ep
    USERNAME: jun2021
    PASSWORD: betabarrel
```


PyRosetta:

DOWNLOAD URL: https://www.pyrosetta.org/downloads USERNAME: teaching PASSWORD: scorefunction

Example ~/.condarc

channels:

- https://USERNAME:PASSWORD@conda.rosettacommons.org
- conda-forge
defaults

Motivation: Why do we care about macromolecular

structure?

Sequence \rightarrow Structure \rightarrow Function

- Structure determines function, so understanding structure helps our understanding of function

Structure more conserved than sequence

- Structure allows identification of more distant evolutionary relationships

Structure is encoded in sequence

- Understanding the determinants of structure allows design and manipulation of proteins

Proteins are Polymers of Amino Acids

Amino
acids

Amino acids have
chiral centers

Proteins are Polymers of Amino Acids

Water and hydrogen bonds

Important:
The O-H distance of $\sim 1.77 \AA$ in an
H -bond is smaller than the sum of :

- the H vdW-radius of $\sim 1.2 \AA$
- the O vdW-radius of $\sim 1.4 \AA$,

Hydrogen bonds in general

Non-polar or Hydrophobic Amino Acids

Glycine (Gly, G) Alanine (Ala, A) Valine (Val, V) Isoleucine (Ile, I) Leucine (Leu, L)

Phenylalanine (Phe, F) Tyrosine (Tyr, Y) Trptophan (Trp, W) Methionine (Met, M) Proline (Pro, P)

Backbone bonds: red Side chain bonds: black

Polar or Hydrophilic Amino Acids

Serine (Ser, S) Threonine (Thr, T) Cysteine (Cys, C) Asparagine (Asn, N) Glutamine (Gln, Q)

Glutamic Acid (Glu, E)
Histidine (His, H) Aspartic Acid (Asp, D)
Lysine (Lys, K) Arginine (Arg, R)

(pymol 1ubq - show how to display sequence, explain atom coloring, select a specific amino acid type)

The Building Blocks of All

Proteins

A Polypeptide Chain

Linking amino acids by forming peptide units.

General Features of Polypeptides

Bond angles and lengths are largely invariant, proteins adopt different conformations by varying phi and psi

Ramachandran (Ф, Ψ) Plot

Sidechain dependence of Ramachandran angles

- Torsion preferences vary for different sidechains
- Most look like alanine because of clashes with $\mathrm{C} \beta$

Higher-order Structure

(a) Primary

(c) Tertiary

(b) Secondary

(d) Quaternary

Protein Secondary Structure: The α-helix

Purple: Hydrogen
Bonds
Bonds
Red: Oxygen
Dark Blue: Nitrogen
Light Blue: Hydrogen
Green: Carbon

A standard α-helix has hydrogen bonds between residues i and $i+4$.

Amphipathic α-Helix

Yellow: hydrophobic amino acids
Blue: hydrophylic amino acids

Protein Secondary Structure: The β-strand

β-sheet

Purple: Hydrogen
Bonds

Red: Oxygen
Dark Blue: Nitrogen
Light Blue: Hydrogen
Green: Carbon
β-strands come together to form β-sheets (the interaction can be either parallel or anti-parallel).

Parallel vs Antiparallel β-strand Interactions

(pymol show beta sheets)

β-sheets form a "pleated sheet"

In both parallel and anti-parallel β-sheets:
The side chains point alternatingly in opposite directions

β-strands: why are they twisted?

A fully extended chain is flat

Real beta strands twist and are not flat

Lactate Dehydrogenase domain 1, end view

Hydrophobic / hydrophilic patterning in β-strands

(pymol -> show hydrophobic patterning in beta sheet)

Protein Secondary Structure: Loops and Turns

Example: an antigen binding domain of an antibody

Active site residues and binding residues are often found in loops.

Turns are short loops (2-4 residues), and typically have more regular structure than loops.

Between secondary and tertiary structure

- Supersecondary structure: arrangement of elements of same or different secondary structure into motifs; a motif is usually not stable by itself.
- Domains: A domain is an independent unit, usually stable by itself; it can comprise the whole protein or a part of the protein.
β-hairpin: Most common form of tight turn

type	Φ_{i+1}	Ψ_{i+1}	Φ_{i+2}	Ψ_{i+2}
I	-60	-30	-90	0
I'	60	30	90	0
II	-60	120	80	0
II'	60	-120	-80	0

Type II'

β-hairpin: Most common form of tight turn

Example of a β-hairpin in bovine pancreatic trypsin inhibitor- BPTI.

Example of a protein with two β hairpins: erabutoxin from whale.

The helix-turn-helix motif

Figure 9.8 Schematic diagram of the three dimensional structure of the Antennapedia homeodomain. The structure is built up from hree α helices connected by short loops Helices 2 and 3 form a helix-turn-helix motif (blue and red) similar to those in procaryotic DNA-binding proteins. (Adapted from Y.Q. Qian et al., Cell 59: 573-580, 1989.)

- This motif is characteristic of proteins binding to the major DNA grove.
- The proteins containing this motif recognize palindromic DNA sequences.
- The second helix is responsible for nucleotide sequence recognition.

The helix-turn-helix motif

homeodomain

(b)

λ repressor

Figure 9.9 Comparison of the helix-turn-helix motifs in homeodomains (a) and λ repressor (b). The recognition helix (red) of the homeodomain is longer than in the procaryotic repressor motif. In addition the first helix of the homeodomain [(green in (a)] is oriented differently.

Figure 9.10 Schematic diagrams illustrating the complex between DNA (orange) and one monomer of the homeodomain. The recognition helix (red) binds in the major groove of DNA and provides the sequencespecific interactions with bases in the DNA. The N -terminus (green) binds in the minor groove on the opposite side of the DNA molecule and arginine side chains make nonspecific interactions with the phosphate groups of the DNA. (Adapted from C.R. Kissinger et al., Cell 63: 579-590, 1990.)

$\beta \alpha \beta$ motif

Why?

- Shorter connections in right-handed topology?
- Accessibility to helix termini for hydrogen bonding?
- Trapped ends?

Triose Phosphate Isomerase (TIM)
A domain which occurs in a many proteins.

Note the " β-barrel" in the center surrounded by α-helices

Note the 8-fold repeated $\beta-\alpha$ motif

Figure 6-30c
$\odot 2013$ John Wiley \& Sons, Inc. All rights reserved.
The "TIM barrel" : α / β class topology

Protein Tertiary Structure

- Most proteins adopt a unique three-dimensional structure that is essential to the biological role they perform. Protein structures can be divided into three groups: globular proteins, fibrous proteins, and integral membrane proteins.

Examples:

HIV protease
(globular)

Porin
(membrane)

Collagen
(fibrous)

Most globular proteins share these characteristics

1) Hydrophobics on the inside
2) Close packing
3) Most polar groups involved in a hydrogen bond

Hydrophobic residues of procarboxypeptidase

Most globular proteins share these characteristics

1) Hydrophobics on the inside
2) Close packing
3) Most polar groups involved in a hydrogen bond

Most globular proteins share these characteristics

1) Hydrophobics on the inside
2) Close packing
3) Most polar groups involved in a hydrogen bond

Fibrous Proteins

- highly elongated molecules that generally function as structural materials
- their sequences are usually highly repetitive

Collagen - a structural component in bone, cartilage, tendon

Sequence: G-X-Y

Collagen

Hyp = 4-hydroxyproline
α-keratin - the principal protein of mammalian hair, nails, skin

The central 310-residue portion of α-keratin has a pseudo-repeat sequence $\underline{a}-\underline{b}-\underline{c}-\mathbf{d}-\mathbf{e}-\mathbf{f}-\mathbf{g}$ with nonpolar residues at \underline{a} and \underline{d}.

Membrane Proteins

- $\sim 30 \%$ of human proteins are membrane proteins
- ~70\% of therapeutics are directed towards membrane proteins

Membrane proteins are important for:

1) ion and solute transport
2) detection of external signals, e.g. hormones
3) cell-to-cell recognition

Membrane Proteins: hydrophobic residues are found on the exterior

Membrane proteins
are often either all- α or all- β
The protein avoids placing main chain $\mathrm{C}=\mathbf{O}$ and NH groups in the hydrophobic bilayer) Bacteriorhodopsin

Figure $9-22$
$\oplus 2013$ John W
α-HELICES crossing the membrane

OmpF Porin

β-BARREL crossing the membrane

CATH

http://www.cathdb.info/browse/tree

```
C C 1 Mainly Alpha
    A 1.10 Orthogonal Bundle
    A 1.20 Up-down Bundle
    A 1.25 Alpha Horseshoe
    A 1.40 Alpha solenoid
    A 1.50 Alpha/alpha barrel
C 2 Mainly Beta
C 3 Alpha Beta
C 4 Few Secondary Structures
C 6 Special
```

```
5Architectures,404 Folds,2033 Superfamilies,103788 Domains
    290 Folds, 1132 Superfamilies, }69116\mathrm{ Domains
    1 0 4 ~ F o l d s , 7 8 8 ~ S u p e r f a m i l i e s , ~ 2 9 6 7 6 ~ D o m a i n s
        6Folds, 103 Superfamilies, }3933\mathrm{ Domains
            2 Folds, 2 Superfamilies, 15 Domains
            2 Folds, 8 Superfamilies, }1048\mathrm{ Domains
21 Architectures, }244\mathrm{ Folds, }1290\mathrm{ Superfamilies, 124032 Domains
14 Architectures, }634\mathrm{ Folds, 2337 Superfamilies, 262275 Domains
    1 Architectures, }108\mathrm{ Folds,}181\mathrm{ Superfamilies, }5716\mathrm{ Domains
    2Architectures, }82\mathrm{ Folds,}790\mathrm{ Superfamilies,4427 Domains
```

- a combination of manual and automated hierarchical classification
- four major levels:
- Class (C) - based on secondary structure content
- Architecture (A) - based on gross orientation of secondary structures
- Topology (T) - based on connections and numbers of secondary structures
- Homologous superfamily (H) - based on structure/function evolutionary commonalities
- provides useful geometric information (e.g. architecture)
- partial automation may result in examples near fixed thresholds being assigned inaccurately

SCOP

https://scop.mrc-Imb.cam.ac.uk/

Browse by structural class

- All alpha proteins
- All beta proteins
- Alpha and beta proteins(a/b)
- Alpha and beta proteins(a+b)
- Small proteins

Folds [455 entries]

- Left-handed parallel coiled-coil SCOP ID 2000962れ this is not a true fold, includes oligomers of shorter identical helices
Superfamilies: 61 th
- Single transmembrane helix SCOP ID 2000395 わ
not a true fold
Superfamilies: 44 [t
- Left-handed antiparallel coiled-coil SCOP ID 2001019 t this is not a true fold, contains at least two very long antiparallel helices Superfamilies: 40 th
- Long alpha-hairpin SCOP ID 2000036 t

2 helices, antiparallel left-handed coiled-coil
Superfamilies: 38 t]

- a purely manual hierarchical classification
- Six levels:
- Class (CL)
- Fold (CF)
- Superfamily (SF)
- Family (FA)
- Protein (PR)
- Protein species (SP)
- provides detailed evolutionary information
- manual process influences update frequency and equally exhaustive examination

From Structure to Function

- Proteins are not static
- Conformational change is critical in performing function
- Intrinsically disordered proteins transition between ordered and disordered as part of their function
- Proteins are modular
- Many proteins are comprised of independent folding domains
- Many proteins function as multi-subunit complexes
- Some proteins require other cofactors/metals to function

Atoms are closely packed in the interior of a protein

Proteins are usually packed as tightly as organic crystals

However, there are two types of motion which are critical:

1. Thermal motion around equilibrium positions of all protein atoms;
2. Functional motions ("conformational change") in response to

- encounters with other molecules
- changes in pH

Conformational Change: Calmodulin

Calmodulin (apo)

Protein structure is important.
Yet, without functional conformational changes of proteins, life would be pretty miserable.

Many Intrinsically Unfolded Proteins Adopt Structure Upon Binding Partner Molecules

Multi-domain proteins

- Many proteins contain 'independent' domains connected by linkers. It is common to combine recognition domains with activation domains. By piecing domains together in new ways it is possible to create new functions.

Example: Src tyrosine kinase. The SH3 domain recognizes substrate and the kinase domain phosphorylates the substrate.

SH3	SH2		Kinase

Multi-domain proteins are very common

(a) Fibronectin

(b) Blood clotting proteins

Factors VII, IX, X, and protein C Factor XII
Tissue-type plasminogen activator $\Delta>\nabla \nabla \square$ Protein S

The order of the symbols indicates the order of the domains

ر
Key
Δ Fibronectin domain 1
\square Fibronectin domain 2
Fibronectin domain 3
$\boldsymbol{\gamma}$-Carboxyglutamate domain

- Epidermal growth factor domain

Domains are compact folded "nodules" of a protein chainSerine protease domain
Kringle domainUnique domain

Living organisms often string domains together into one protein chain and then modify each domain for a specific function

Interesting fact: the human genome does not contain more types of protein domains than more primitive organisms, but rather just puts them together in more complicated ways.

A Trimer with cyclic C3 Point Group Symmetry

From the surface of the influenza virus

Some viruses have icosahedral symmetry

Icosahedral symmetry generates 60 equivalent objects out of ONE object.

There are 20 triangles per icosahedron, so from the figure above it is quite easy to calculate that there are 60 golden objects with the shape of a " 1 " per
icosahedron

Spherical viruses with icosahedral symmetry have often $\mathbf{N} \times 60$ equivalent protein subunits in the capsid surrounding the RNA or DNA in a virus particle
(where \mathbf{N} is an integer).
The virus above has $\mathbf{3 \times 6 0}=\mathbf{1 8 0}$ proteins in its "capsid".

Inside the capsid above is the viral RNA
(Poliovirus looks like the virus above).

The GroEL/GroES chaperone: Outside Architecture

Note different conformations of the two, upper and lower, GroEL rings. The GroES ring and the two GroEL rings have all 7 -fold C7 symmetry.

Assembly of the $A B_{5}$ holotoxin Cholera Toxin \& Enterotoxin

The Nucleosome: a protein + DNA assembly

- Nucleosomes are the buildıng blocks of chromosomes.
- In the centre of the nucleosome there are eight (2×4) proteins called "histones".
- A double stranded DNA helix (~ 146 base pairs) wraps around this histone core.
- The histones are shown as "ribbons" in the centre of the nucleosome

Many proteins feature co-factors

The protein of "vision" A "membrane protein" Note schematic representations of α-helices

The molecule in red is "retinal" Brown: "posttranslational modifications"

Myoglobin

Heme group in red with spherical $\mathrm{Fe}(\mathrm{II})$ ion in center.

- The eight helices are labeled A to H.
- Helix-connecting loops are $A B, B C$, etc

X-Ray Crystallography

- crystallize and immobilize single, perfect protein
- bombard with X-rays, record scattering diffraction patterns
- determine electron density map
 from scattering and phase via Fourier transform:
- use electron density and biochemical knowledge of the protein to refine and determine a model

NMR Spectroscopy

determining constraints

using constraints to determine secondary structure

- protein in aqueous solution, motile and tumbles/vibrates with thermal motion
- NMR detects chemical shifts of atomic nuclei with non-zero spin, shifts due to electronic environment nearby
- determine distances between specific pairs of atoms based on shifts, "constraints"
- use constraints and biochemical knowledge of the protein to determine an ensemble of models

Cryo-electron microscopy

